K22P 1602

Reg. No.	
Name :	

I Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022
(2019 Admission Onwards)

MATHEMATICS

MAT1C02: Linear Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Find a basis for a Vector Space $V = \{(x, y, z) \in \mathbb{R}^3 | y = z + x\}$.
- 2. Let F be a Field and let T be a operator on R^3 defined by T(x, y, z) = (x + 2y, x + y + z, 2y + 4z). Find the Matrix of T with respect to standard basis.
- 3. Show that similar matrices have same characteristic polynomial.
- 4. Let T be a linear operator on V. Show that range of T and null space of T are invariant under T.
- 5. True or False. Justify. "Every inner product space is a metric space".
- 6. Let W be a subspace of R^4 consisting of all vectors which are orthogonal to both x = (1, 0, -1, 1) and y = (2, 3, -1, 2). Find a basis for W.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. A) Define rank and nullity of a linear transformation. Let V and W be vector spaces over the field F and T be a linear transformation from V into W. Suppose V is finite dimensional then show that rank (T) + Nullity (T) = dimV.
 - B) Let T is a function from R^2 into R^2 defined by T(x, y) = (y, x). Check whether T is a linear transformation or not?

- 8. A) Let V and W be Vector Spaces over the field F and let T is a linear transformation from V into W. If T is invertible then show that, the inverse function T⁻¹ is a linear transformation from W onto V.
 - B) Give an example of a linear transformation, which is not onto and non-singular. Also give an example of a linear transformation, which is
- 9. A) Let V and W are Vector Spaces over the field F and let T is a linear transformation from V into W. The null space of Tt is the annihilator or range of T. If V and W are finite dimensional then show that
 - i) Rank (Tt) = Rank (T)
 - ii) The range of T^t is the annihilator of the null space of T.
 - B) Let A be an $m \times n$ matrix over the Field F. Then show that row rank of A = column rank of A.

Unit - II

- 10. State and prove Cayley-Hamilton Theorem.
- 11. A) Let V be finite dimensional vector space over a field F and let T be a linear operator on V. Then show that T is triangulable if and only if the minimal polynomial for T is the product of linear polynomials over F.
 - B) Let V be finite dimensional vector space over a field F and let T be a linear operator on V. Then show that T is diagonalizable if and only if the minimal

$$p = (x - C_1) \dots (x - C_k)$$
, where C_1, \dots, C_k are distinct elements

- 12. A) Find the minimal polynomial for the 4 × 4 matrices 0 1 0 1.
 - B) Find an invertible real matrix p such that P⁻¹ AP are diagonal.

Where
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$
.

13. A) Let T be a linear operator on a finite dimensional vector space V over the field F. Suppose that minimal polynomial for T decomposes over into a product of linear polynomials. Show that there is a diagonalizable operator D on V and a nilpotent operator N on V such that

$$i) T = D + N$$

D and N are uniquely determined by (i) and (ii) and each of them is a polynomial in T.

- B) If A is the companion matrix of a monic polynomial p, then show that p is the minimal and characteristic polynomial of A.
- 14. A) Let A be a complex 3 × 3 matrices given by A = a 2 0 . Show that A is similar to diagonal matrix if and only if a = 0.
 - B) Let V be the space of all n-time differentiable functions on an interval of real line which satisfying the differential equation $\frac{d^n f}{dx^n} + a_{n-1} \frac{d^{n-1} f}{dx^{n-1}} + \dots + a_1 \frac{d^1 f}{dx^1} + a_0 f = 0, \text{ where the coefficients are}$ complex numbers. Let D be the differential operator on V. What is the Jordan form for the differentiation operator on V?
- 15. A) Define inner product space. Give an example of inner product space.
 - B) State and prove polarization identities in real and complex cases.
 - C) Show that every finite dimensional inner product has an orthonormal basis.